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IL. On the Volumes of Pedal Surfaces. By T. A. Hizsr, F.R.S.

Received August 25,—Read November 20, 1862,

1. In accordance with-the proposition recently made by Dr. SaLmoN in his excellent
treatise on Surfaces*®, the term pedal surface is here adopted, as the English equivalent
of the French surface-podaire and the German Fusspuncts-Fliche, to indicate the locus
of the feet of perpendiculars, let fall from one and the same point in space, upon all the
tangent planes of a given primitive surface.

The point of contact of the tangent plane, and the foot of the perpendicular upon the
latter, are said to be corresponding points on the primitive and its pedal. The point
whence perpendiculars are let fall may be termed the pedal-origin. It is obvious that
‘the pedal surface may likewise be regarded as the envelope of spheres having for their
diameters the radii vectores from this origin to the several points of the primitivef.

The primitive surface remaining unaltered, the magnitude and form of the pedal will
of course vary with the position of its origin. Between the volumes of all such pedals,
however, certain very general and remarkable relations exist. The object of the present
paper is to establish these relations.

2. Twenty-four years agof Professor STEINER, in one of his able and purely geometrical
memoirs presented to the Academy of Berlin, established analogous relations between
‘the areas of pedal curves corresponding to different origins in the plane of the primitive.
I am not aware, however, of any attempt having been made to extend his results to
surfaces, although such an extension can scarcely have failed to suggest itself, not only
to STEINER himself, but to many of hisreaders§. For the sake of comparison I will here
state a few of these results.

# A Treatise on the Analytic Geometry of Three Dimensions, by G. Sarmon, D.D., 1862, p. 369.

+ The pedal origin being the same, the surface derived from the pedal, in the same manner as it was derived
from the primitive, would be called the second pedal ; the pedal of this, again, the third pedal, and so on. It
has, further, been found eonvenient to apply the term positive to the pedals of this series, in order to distin-
guish them from another series of surfaces obtained by reversing the above process of derivation. Thus the
surface of which the primitive is the pedal is termed the first negative pedal, and so on. I may also remark
that the whole series of positive and negative pedals is identical with the series of derived surfaces which forms
the subject of papers published by Messrs. Torrorint and W. Roserts, as well as by myself, in TorrorLinr’s
¢ Annali’ and the ¢ Quarterly Journal of Math.” for 1859. In the present paper first positive pedals are alone
considered, though it would no doubt be interesting to examine the volumes of pedals of higher order,

I See CreLre’s Journal, vol. xxi. p. 57.

§ Dr. BorcHARDT has quite recently (April 1863) apprized me of the existence of an Inaugural Dissertation,
entitled “De superficierum pedalium theorematibus quibusdam,” whose publication was sanctioned, in 1859,
by the University of Berlin, and in which the two fundamental theorems of art. 3 are established. To English
mathematicians, however, the theorems in question will probably be still new, since, so far as I can ascertain,
their discoverer, Dr. Frscurg, has never given full publicity to the results of his investigations,

MDCCCLXIII. D

[ ,‘\’2

e

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to [[& )24
Philosophical Transactions of the Royal Society of London. IING®RY

WWWw.jstor.org



14 MR. T. A. HIRST ON THE VOLUMES OF PEDAL SURFACES.

“The primitive curve being closed, but otherwise perfectly arbitrary, the locus of the
origins of pedals of constant area is a circle. The several circular loci, corresponding to
different areas, are concentric, and their common centre is the origin of the pedal of
minimum area.”

STEINER signalizes, as a very remarkable mechanical property of this common centre,
the fact that it always coincides with the Kriimmungs-Schwerpunct of the primitive
curve,—that is to say, with the centre of gravity of that primitive, regarded as a material
curve whose density is everywhere proportional to the curvature.

In 1854, sixteen years after the appearance of STEINER’S memoir, Professor RAABE of
Ziirich* extended STEINER’S theorem so as to embrace the pedals of unclosed curves.
The general definition of the area of a pedal being the space swept by the perpendicular
as the point of contact of the tangent describes the primitive arc, RAABE found that “ the
origins of all pedals of the same area lie on a conic.” The several quadric loci, corre-
sponding to different areas, are concentric and co-axal; their common centre is again
the origin of the pedal of least area; and though it no longer coincides with the
Krismmungs-Schwerpunct of the primitive arc, it is intimately connected therewith, as
has been more recently shown by Dr. Werzie of Leipzig.

3. With respect to surfaces, the volume of the pedal may be stated, in general terms,
to be that of the cone whose vertex is the pedal-origin and whose base is that portion
of the pedal surface which corresponds to the given portion of the primitive. This
definition being accepted, it will be shown in the sequel that, whatever the nature of the
primitive surface may be, the origins of pedals of equal volume always lie on a surface of
the third order; and further, that when the primitive surface is closed, but otherwise
perfectly arbitrary, this cubic locus degenerates to o quadric, the whole of the loci,
corresponding to all possible volumes, then forming a system of similar, similarly placed,
and concentric quadrics whose common centre is the origin of the pedal of least volume.

4. For the sake of comparison it is desirable to treat, by a uniform method, the two
analogous questions respecting pedal curves and pedal surfaces. I commence, therefore,
with a brief consideration of STEINER’S theorem.

Let (C) represent the primitive curve, (P) the pedal whose origin A has the coordinates
z, 9, and (P,) the pedal whose origin O coincides with that of the coordinate axes. The
curve (C) may be regarded as dividing the plane into two parts, distinguishable as
external and internal; let & and 3 then be the angles, each positive and less than =,
between the positive directions of the coordinate axes and that of the normal at any
point M of (C), this normal being always supposed to be drawn from the curve into the
external part of the plane. Further, letp and p, be the perpendiculars let fall respect-
ively from the point A, and from the origin O upon the tangent at M, so that their feet
m and m, are the points on the pedals (P) and (P,) which correspond to M on the primi-
tive. The direction-angles of each perpendicular will be

@, 3, Or 7 —u, 7—f3,
* Crerre’s Journal, vol. 1. p. 193.
I Zeitschrift fiir Mathematik und Physik, 1860, vol. v. p. 81.
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according as its direction coincides with, or is opposed to that of the normal; so that if

we regard p and p, as positive or negative according as the one or the other of these
circumstances occurs, we shall have, generally,

P=pPy—& COS &—Y sin e.

If we, further, denote by dd the arc of the unit-circle, around the origin, intercepted
between radii whose directions coincide with those of the normals at the extremities of
the element ds of the primitive arc at M, and agree to consider the parallel elements ds
and dé as alike or unlike in sign according as their directions coincide with or are
opposed to each other, the corresponding elements dP and dP, of the areas of the pedals
(P) and (P,) will be
7 W op P

P ———,

dP="45-
and, by the preceding relation, we shall have

2dP=(p,—~x cos a—y sin &:)’dd’;
whence, by integration, we deduce the equation

P=P,—Ar—Ay+LA 22 +2A2y+Ay®), « « . . . . (A)

wherein P and P, denote the areas of the two pedals, and the coefficients have the values
A =j‘pod0. coS &, &:fpodo'..cos B,

A,,=§d0? cos’ o, A,2=§da cos a cos 3, A,z_-:j‘do cos’3,

dependent only on ;the position of the origin O, and on the curvature of the primitive
curve. The integration in each case is, of course, to be extended to all points of the
primitive arc.

6. The above formula, by means of which the area of any pedal (P) may be found
when the area of any other (P,) is known, shows at once that the locus (A) of the origin
A of a pedal (P) of constant area is a conic, and that all such loci constitute a system of
similar, similarly placed, and concentric conics, the common centre of the loci being the
point at which the integrals A,, A, vanish. If we suppose the origin of our coordinate
axes to coincide with this point, the equation of the locus (A) may be written thus:

P=Po+%ﬁ xcos e+ cos B)°dd,

whence we learn that the common centre of all the quadric loci (A) is the origin of the
pedal of least area.

6. This is RAABE’S theorem ; in order to deduce STEINER’S from it let us consider, in
the first place, the pedals of a primitive arc containing a point of inflexion and having
parallel normals at its extremities. The normals along such an arc will consist of
pairs of like-directed parallels; but in passing from one extremity to the other the sign

D 2



16 MR. T. A. HIRST ON THE VOLUMES OF PEDAL SURFACES:

of d¢ will change, so that the integrals A,, A,;, A, will each consist of equal and
opposite elements and vanish in consequence *. : :

If, now, the primitive be a closed curve, but otherwise perfectly arbitrary, we may
always conceive it to consist of arcs (C') of the kind just considered, and of other arcs
(C") the directions of whose normals represent exactly all possible directions round a
point. But it has already been shown that for every arc (C') the integrals A,,, A, A,y
vanish, and it is easy to see that, extended over the arcs (C"), these integrals have the

values .
Ay=Ay=mnr, A,=0,

where n represents the number of such arcs, in other words, the number of convolutions
of the primitive curve. In this case, therefore, the equation of art.  becomes

P=P,+ (2" +")=Po+ 57"

and for constant values of P represents a circle around the origin of the least pedal.
7. In order to illustrate by an example what is meant by the area of a pedal, let
us consider for a moment the case of an ellipse with the semiaxes e, 5. The focal peda,l
as is well known, is a circle whose diameter is the major axis; so that putting for P, n, 7
the values #a?, 1, a>—#? respectively, we find, for the area of the central pedal, the value

Po=5(a*48%),

equal to the area of the semicircle whose radius is the line joining the extremities of
the axes; and the area of any other pedal is

=;—(a2-|.-62-|—1"2).
For the circle a=4, we have
P=7ra2+§7‘2,

which clearly represents the sum of the areas of the two loops of which the pedal con-
sists when its origin is without the circle. 'When « vanishes, the pedal is well known
to be the circle on 7 as diameter. Our last formula shows, however, that we must con-
ceive this circle to be doubled. A glance at the expressions for p and dP in art. 4
explains this distinctive feature of pedal areas. It will be there seen that the sign of
the increment dP does not depend upon that of p, which latter changes according as the
pedal-origin lies on one or the other side of the tangent. For pedal surfaces, to which
we will now proceed, the case is otherwise.
8. Let x, y, z be the coordinates of the origin A of a pedal (P) of a surface (S); and,

as before, let (P,) denote the pedal of the same surface whose origin O coincides with
‘that of the coordinate axes. Then if «, 3, y be the direction-angles of the external

* The locus (A) of equal pedal origins coincides, in this case, with the right line P=P,—A,x— Ay, as was
Afirst shown by Werzie.
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normal at a point M. of (S), and p, p, the perpendiculars from the origins of (P) and (P,)
upon the tangent plane at M, we shall, again, have the general relation

P=pP,—% COS o.—1 €OS 3—2 COS ¥,

provided the sign of p be understood to depend upon the side of the tangent plane upon
which the pedal origin is situated.

Further, let do be the surface-element of the unit-sphere intercepted by radii having
precisely the same directions as the external normals at the contour of the element ds at
M on the primitive surface. According to Gauss’s definition ds will also be the tofal
curvature of the element ds, and will have the value kds, where % is the measure of
curvature at M, in other words, the reciprocal of the product of the principal radii of
curvature. The volume-element of the pedal P will, obviously, have the value

dP =1y*do,

and will change sign with p as well as with do. By means of the preceding relation,

then, we have
SdP__(p—-x cos u—y cos 83—z cos y)*do,

Whlch expression, When developed and integrated, assumes the form

P—Po""'(An Aga AaIx, Y, z)+(Am A22, Asaa A-23, Aau Amea Y, Z)Q} (A )
"—%(Ama Azzm A-sssa_ -.A-uza Ausa Aaga’ Azzn Assu A-asza Alzst’ Y, z)s’

where the nineteen coefficients are independent of the position of the pedal origin A,
and represent double integrals to be extended to all points of the primitive surface. Of
these coefficients it will suffice to write the values of the following six, the remaining
thirteen being deducible therefrom by permutations of &, 8, ¥ in accordance with those
of the suffixes 1, s, s.

A, =j‘p§do' oS & , A, =j‘100d6 cos’ex Alllzjda cos® o,
A12=ypoda cos & cos 3, Am::j‘do- cos’acosB, A, =fda cos & cos 3 cos y.

The above formula for the volume of the pedal (P) at any point A shows at once, as
stated in art. 8, that the origins of pedals of equal volume are situated on a surface of
the third order.

9. The analogy between the cases of pedal curves and surfaces will be evident on
observing that the above cubic locus proceeds essentially from the three dimensions of
space, just as the quadric locus, in the case of pedal curves, was due to the two dimen-
sions of a plane. It is interesting to note, however, that whilst the hypothesis of a
closed primitive curve had merely the effect of altering the species, not the order, of the
locus (A), the hypothesis of a closed primitive surface leads to a reduction of this locus
from a cubic to a quadric. The former effect was produced by the equalization of the
coefficients of #* and 4?, and the vanishing of that of a4y (art. 6); the latter is due to
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the vanishing of each of the ten integrals A, A,,, &c.... which, not involving p,,
have values dependent solely upon the curvature of the primitive surface.

I do not attempt any complete discussion of all possible singularities of curvature, but
merely observe that the above-mentioned property of the ten integrals is easily recognized
when the primitive surface is not only elosed, but everywhere convex ; for since all direc-
tions round a point are then exactly represented by its normals, the integrals in ques-
tion each represent a sum of pairs of equal and opposite elements. In the more general
case, where certain directions are represented more than once, and consequently an odd
number of times, by the normals of the primitive, the property in question may be
verified by a method similar to that employed in art. 6.

10. The primitive being a closed surface, the form to which the equation (A.) of art. 8
becomes reduced, at once shows that the several quadric loci corresponding to pedals (P)
of different, but constant volumes, constitute a system of similar, similarly situated, and
concentric quadrics, their common centre being the origin of the pedal of least volume.
For if this centre, which is determined by the conditions

1—5P§d¢ cos =0, Az—ypﬁda cos3=0, A, _j‘p do cos y=0,

were chosen as origin of coordinate axes, the equation (A.) of art. 8 would assume the
form

P=Po+(Am Agy Agsy Ay, Ay, Au:(@ Y, z)z,
which may be also written thus,

P=P, +j‘p.,(m cos w-+y cos 342 cos y)'do,

in which form it renders apparent the minimum property in question.

‘When the closed primitive has itself a centre, the latter will also be the common
centre of the loci (A); for, the centre of the primitive being taken as origin of coordinate
axes, each of the integrals A,, A,, A, will again consist of pairs of equal and opposite
elements.

11. To illustrate the foregoing principles, as well as to facilitate future applications,
we will consider for a moment the simplest of all cases—where the primitive is a
sphere with radius ¢. Taking its centre for origin, sixteen of the integrals of art. 8
will be found to vanish, and the remaining ones, A,;, Ay, A, to acquire the common
value 7@ ; so that the volume of any pedal (P) becomes "

P=¢ra(a®+2>+y*+2*)=47a(a*+1).
When the origin of (P) is without the sphere, the pedal consists, of course, of two
distinct sheets, each passing through the origin and touching the primitive; the volume
of the pedal, as above given, is the difference of the volumes enclosed by these sheets.

‘When the sphere diminishes to a point, the volumes of all pedals vanish according to

the formula; so that we must regard the pedal of a point as consisting of fwo coin-
cident spherical sheets.
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In like manner the pedal of a tubular surface would, in general, consist of distinct
sheets which would coincide when the primitive degenerated to a line. Although the
pedal surface, therefore, still exists when two dimensions of the primitive are supposed
to vanish—being, in fact, still the envelope of spheres whose diameters are the radii
vectores of the curve—its volume must be regarded as evanescent. :

The case is otherwise, however, when one only of the three dimensions of the primi-
tive is supposed to vanish. Such a surface (S') would consist of two coincident sheets,
and would, therefore, enclose no space; to the eye, in fact, it would not be distinguish-
able from some definite portion of an ordinary surface. Its pedal, however, would be
of a compound nature—consisting, first, of a surface (P') of the same nature as (S'),
undistinguishable to the eye from ja portion of its ordinary pedal, and, secondly, of the
simple pedal (P) of the curve (C) forming the contour of the primitive (§'). The
volume of the compound pedal, however, would be simply that of the pedal (P) of the
contour (C). This volume, therefore, properly interpreted, ought to be deducible from
our general formulze.

It must be observed, however, that although the form of the pedal of a curve (C) is
invariable, its volume must be differently estimated according to the nature of the two-
dimensional surface (S') of which the curve is supposed to form the contour. Torender
this more evident, it will be convenient to regard the pedal of a curve, not only as the
envelope of a sphere, but also as the locus of a circle whose magnitude varies at the
same time that its plane rotates about a fixed point, the pedal-origin. This circle, in
fact, is the characteristic of the pedal; its plane is perpendicular to the tangent at a
point M on the curve (C), and its chords, though the origin, are the perpendiculars upon
the several tangent planes of (S') at the point M of its contour.

Remembering now the convention of art. 8 with respect to the signs of these perpen-
diculars, and the relation between the same and those of the corresponding volume-
elements, we easily conclude that the volume of the pedal (P) will be the difference of
the volumes of the surfaces generated by the segments into which the characteristic
circle is divided by the perpendicular p' upon the ordinary tangent plane of (') at the
point M of its contour. '

The most interesting case, and the only one we shall examine further, is when the
surface (S') coincides with the developable of which (C) is the cuspidal edge. The per-
pendicular p’ then coincides with that let fall on the osculating plane of the primitive
curve (C); through it pass the planes of two consecutive characteristics, and the locus
of its extremity is the cuspidal edge of the pedal (P), and at the same time the curve to
which, as is well known, the pedal surface of the developable (S') resolves itself.
The volume of the pedal (P) has now the simplest possible definition, and the double
integrals of art. 8, by means of which this volume may be expressed, are easily reducible
to single ones. ‘ -

12. To effect this reduction, we will first express any perpendicular p, by means of p'
the perpendicular on the osculating plane of (C)—parallel therefore to the binormal—and
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p the perpendicular on the rectifying plane; the latter will of course be at right angles
to p' and parallel to the principal normal. Since p’ and p are perpendicular chords of
a circle, passing through the same point of its circumference, we have at once

Po=p' cos ¢p}p sin @,

where ¢ is the angle between p' and p,.

Further, the direction-cosines of p,, that is to say cose, cosf3, cosy, may in like
manner be expressed by means of those of p' and p, which we will denote respectively
by ¥, ¢/, / and A, w, ». For the projections on p,, ¢, p ‘of the linear unit, set off on
any line through the origin, are clearly, again, chords of a circle, so that, operating
successively on the three coordinate axes, we readily deduce the relations

cos & =~ cos -2 sin @,
cos 3=y cos p+w sin @,
cos y=/' cos ¢+ sin ¢.
Lastly, representing by dé the angle between the planes of two consecutive character-

istics, in other words the angle of contact of the primitive curve (C), the surface-element
do of the unit-sphere will have the value

do= sin ¢ do dé.

We have now merely to substitute the above values in the several integrals of art. 8,
and to effect the integration according to ¢ between the limits 0 and =, regarding
thereby p, 9, A, w, », ¥, ¢/, V' as constants. This may be readily done; the nineteen
results are deducible by appropriate permutations of A, '; g, &'; and», ¥, in accordance
with the corresponding suffixes i, 2, and s, from the following six expressions :—

A, =7§rﬁ37\p2+27\fp_p'+7xp’2)d9.

A, =§ﬁ(3ﬁ+x’2)p+2n'p’]dé.

A =2 VS p+ (' + 10,

A,,l=?’gﬁw+x2)da.

Am=§ﬁ(3x2+x’2)¢+2AA’¢']da.

kAng—jy(?)?\(.w—l—A"‘w’v—l—A‘w'»’—|—7\’W’)d9.
By means of the equations to the' curve the nine quantities involved in these integrals
are readily expressible as functions of a single variable. This done, the integration in

each case is to be extended to all points of the primitive curve (C).
13. I do not enter into the several interesting questions which here suggest them-
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selves—as to the nature of the cubic locus of the origins of pedals of the present kind
which have a constant volume, the conditions under which this locus degenerates to a
quadric, and the position of the origin of the pedal of least volume—but pass at once to
‘the case of a plane primitive curve, every pedal of which will be a surface generated by a
circle, through two fixed points, whose magnitude varies at the same time that its plane
rotates around the line joining those points. Taking the plane of the primitive as the
coordinate plane of &y, we have clearly
P'=0, N=p'=y=0, /=1,
and consequently '
Ay=Ap=A=A=A=Ag=A,,=0,

A =FVgras, A, =¥ \upao,
A, = fx%pda A= jpo’fpdé,
A, =%’—’jﬁpd9, A, = j‘pdé

A= 5;\3d0 » A222=§g‘fﬂl3d9

A112=§87—rj’7\2{/‘d93 Ag =3_87_r 7‘-/*02d‘9a

Agy= 5;\‘1‘9 Age=75 j{bd@

‘When the primitive is a plane ¢losed curve, the last six integrals, in general, vanish,
and the locus of origins of equal pedals again degenerates to a quadric surface. The
origin of the least pedal does not generally coincide with the Kriimmungs-Schwerpunct,
since A,, A, have no longer the same values as in art. 4; it coincides with the centre of
the primitive, however, whenever the latter possesses such a point. For instance, for a
primitive circle (@) it will be found, on taking its centre for origin, that, with the
exception of three, all the foregoing integrals vanish, and that these three acquire the

values .
— A 3,2 —
Ay=Ap={r'a, Ay=i7"a.

The volume of the central or least pedal, (P,), which is here a surface generated by the
rotation of a circle with 1ad1us about one of its tangents, is easily found to be 177, so

that the volume of any other pedal will, by art. 8, be
P= —a(Sa: +3y° +2z2+2a2)

and the locus of origins of pedals of the same volume a prolate spheroid.
14. To return to the case of surfaces: I propose to consider next the pedals of the
ellipsoid, which, ever since the publication of FRESNEL'S researches on Light, have been

MDCCCLXIII. E



22 MR. T. A. HIRST ON THE VOLUMES OF PEDAL SURFACES.

regarded with especial interest. The application to them of the foregoing principles
will lead us to several new results.

With a view to this application, and in continuation of the subject of art. 10, I may
add that when the primitive surface is symmetrical with respect to three rectangular
‘planes, the integrals A,,, Ay, A, likewise vanish, on taking these planes of symmetry for
coordinate planes. In virtue of this property, which is evident from an inspection of
the values in art. 8, the expression for the volume of any pedal assumes the simple form

P=P,+4 A, 2"+ Apy’+As?’.

If, further, as;in the case of the ellipsoid, the primitive be a closed convew surface, the
coefficients

Au=jvp0da' cos® o, Aﬁ:fpoda cos® 3, 'A33=j'p0do- cos’y

will manifestly be sums of elements of the same sign, so that the locus (A) of equal pedal
origins will be an ellipsoid whose axes coincide with the axes of symmetry of the primitive .
15. For the primitive ellipsoid
22 ?/2 22

a tay lagT

the squares of whose semiaxes, written in descending order of magnitude, we will sup-
pose to be a,, @,, @,, we have the well-known formule

€08 &=7- Doy Os =ggPo  COSY=7Dos

P @ T &7 a2 a, cos® a+a,cos* B +ag cost
1
— 837 = —— o7
3P,= 1’°d”—ala2a3j’p°ds‘

Both these equivalent expressions for the volume of the central or least pedal have
their advantages. In the second the integration is supposed to be extended to all points
of the ellipsoid; in the first, after expressing «, 8, ¥ and thence p, by means of two
suitable independent variables, to all points of the unit sphere. The limits in the latter
case will not involve the axes, and by partial differentiation we shall clearly have

_._j'po P, d¢r=% do p, cos® d:%’—’,

with similar formule for .A22 and A,,; so that the volume of any pedal whatever will be
given by the formula

P—-P +23P0 2+28P0 2+23P0 2 .

that is to say, it will be obtained by simple differentiation of the expression for P,. At
the same time it will be observed that P,, being a homogeneous function of @,, @,, @, of
the degree 3, satisfies, identically, the relation

3P, =20, 2¢ = P01 24 aP"+2a3
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or, retaining the more convenient symbols A,;, Ay, Ag,

3Po=“1Au+a2_A22+aéA33'

16. From this, and the general formula for P inart. 14, a very simple relation may be
at once established between the volume of the central pedal and that of any other whose
origin is on one of the diagonals of the rectangular parallelopiped circumscribed to the
ellipsoid. For the coordinates of any point on such a diagonal are given by the equations

e et L e e

where 7 is the radius vector to the point, and a=a,+a,+}a, the square of the semi-
diagonal in question. On substituting these values the two formule for P and P, give

a4 3r2
a

P=

P,.

When 7*=aq, the origin of (P) coincides with a corner of the parallelopiped ; and when
8r°=a, it is a point on the ellipsoid; so that we may say, the volume of the pedal whose
origin is at any corner of the rectangular parallelopiped circwmscribed to the primitive
ellipsoid is four times that of the central pedal, and doudle that of the pedal at any oné
of the eight points wherein the ellipsoid is pierced by the diagonals of the parallelopiped.

17. In order to establish further relations we will represent, generally, by #,, y;, z; and
r; the coordinates and radius vector of any point (/) in space, and consider, first, the
pedals (P,), (P.), (Ps) whose origins are at the extremities (1), (2), (s) of any three con-
jugate diameters of a quadric (§') concentric and co-axal with the primitive ellipsoid (S).
The squared semiaxes of (8') being @, a;, &5 we have, of course,

;i +ai+ai=a,

yit+ytyi=a,

7+ 2 =dy;
so that by substituting successively, in the general formula for (P), art. 14, the coordi-
nates of the three points under consideration, and adding together the resulting egua-
tions, we have

P, +P,4-Py=3P+ A+ %A pt0:A6= 8P.

The pedal (P), whose volume is here put equal to one-third of the constant sum of the
other three volumes, is easily seen, by the general formula for P, art. 14, to be that whose

origin is at one of the points (\/ 4 \/ 5 \/ a*’) where the quadric (§) is pierced by
the diagonals of its circumscribed parallelop1ped If, then, we agree to take the volume
of a pedal positively or negatively according as the diameter upon which its origin he§
meets the quadric (S') in real or imaginary points, we may say that the algebraical sum
of the volumes of three ellipsoid-pedals, whose origins are at the extremities of any conju-
gate diameters of & concentric and co-awal quadric, is constant; and equal to three times
the volume of the pedal at the point where this quadric is pierced by a diaganal of its
circumscribed rectangular parallelopiped.
E 2
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We may add, too, that the sum of the three pedal-volumes corresponding to origins
situated at the extremities of conjugate diameters is not only invariable for one and
the same quadric (S'), but for all concentric and co-axal quadrics which are inscribed in
rectangular parallelopipeds, themselves inscribed in one and the same locus (A) of equal
pedal origins. For the axes of all such quadrics clearly satisfy the condition

@Ay @A+ Ay = const.

18. When the quadric (S') is not only concentric and co-axal with the primitive
ellipsoid, but also similar to it, the diagonals of their circumscribed rectangular paral-
lelopipeds coincide in direction ; so that by art. 16, and putting

Srr=a,+d,+d,=d,
the last relation becomes

P,4P,4P,=5P=3"1"D,

When ¢'=a, that is to say, when the quadric (§') coincides with the primitive ellip-
soid, we learn that the sum of the volumes of the three pedals whose origins are at the
extremities of any conjugate diameters of the primitive ellipsoid is constant, and equal to
six times the volume of the central or least pedal.

The three pedals whose origins are the vertices of the primitive ellipsoid are, of course,
included in this theorem.

19. When the quadric (S') is a sphere, the conjugate diameters are at right angles to
each other, and the diagonals of the circumscribed parallelopiped (cube) are equally
inclined to the axes of the ellipsoid ; hence ¢he sum of the volumes of the ellipsoid-pedals
whose origins are the three vertices of any tri-rectangular triangle on @ concentric sphere
is constant, and equal to three times the volume of the pedal at a point on the sphere
equidistant from the axes of the ellipsoid. The value of this constant sum is

8P4 1A+ A+ As).

20. Lastly, when the quadric (§') is an ellipsoid confocal with the primitive, we may

put
O — =0~ A, =0C—a,=k’,

and substitute the values of @, a;, @; in the general equation of art. 17. By so doing
we find :
P, +P2+Ps=6Po+k2(Au +A22+A33)-
Comparing this, therefore, with the expression at the end of the last article, we learn
that the sum of the volumes of the three pedals whose origins are at the extremities of
any conjugate diameters of an ellipsoid confocal with the primitive is equal to double
the sum of the volumes of the three pedals at the extremities of any three orthogonal
diameters of a concentric sphere the square on whose radius is half the difference of the
squares on the like-directed semiaxes of the confocals. Of this general theorem the one
at the end of art. 18 is a particular instance, corresponding to the case where the con-
focal ellipsoids coincide, and consequently £=0.
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21. From the fundamental formula, written thus,
P'—PO

2

"H= =A,, cos? A}A,, cos? Ay cos®y,

we may deduce further relations, as well as a construction for the volume of the pedal
at any point. In the first place we learn that the linear magnitude H is constant at all

points of the same radius vector; and secondly, that it is ‘the limit to which };:

approaches as the origin of the pedal recedes from the centre. This line %, being the
altitude of a parallelopiped (of the same volume as the pedal) having for its base the
square on the radius vector, we propose, for convenience of enunciation, to call the
pedal-altitude at the point under consideration. Thus H will be the pedal-altitude at
infinity on the line (A, w, v); A, Ay, Ay, respectively, the pedal-altitudes at infinity on
the three axes, and (A,,+A,;+A;;) that on the line equally inclined to the three axes.

Imagine now a central ellipsoid-pedal (P), concentric and co-axal with the primitive,
and such that the squares on its semiaxes are respectively proportional to the altitudes
Ay, Ay Ay Tt ds plain from the last equation that the squares on its radii vectores
will be proportional to the pedal-altitudes at infinity on those vectores. The pedal-
altitude at infinity on any line being thus determined by the auxiliary pedal (P), that
at any other point on the same line is easily found, and thence also the parallelopiped,
equal in volume to the pedal which has that point for origin. '

22. Between the pedal-altitudes at different points in space numerous relations might
be established ; we shall limit ourselves to one or two. Let (1), (2), (s) now denote the
extremities of any three diameters, at right angles to each other, of the concentric and
co-axal quadric (S') before considered. Then the addition of the three formule (similar
to the one last written) which refer to these extremities gives

1,1 1 -
by A-hyt-he=DP, <2171+-l;;+a_3> A+ Ayt Ap=3h,
since by a well-known theorem
1,1, 1 1 1 1
AR e
The pedal-altitude %, which is here put equal to the constant arithmetic mean of the
other three, corresponds to the point on the quadric (S') which is equidistant from its
three axes, as may be easily seen by putting, in the formula of art. 21,
cos® A= cos® p== cos8’ y=7%,
and observing that for such a point
3 1.1 1
GRCAArA
Hence the algebraical sum of the three pedal-altitudes at the extremities of any three
orthogonal diameters of a quadric, concentric and co-axal with the primitive ellipsoid, is

constant, and equal to three times the pedal-altitude at the extremity of a diameter of
the quadric equally inclined to its axes.
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We may add, too, that this sum is not only invariable for one and the same quadric
(8), but for all concentric and co-uxal quadrics which pass through one and the same
point, equidistant from the principal diametral planes of the primitive ellipsoid. The
quadric (S') being a sphere, the pedal-altitudes at its several points are, of course,-
proportional to the pedal-volumes; so that we obtain again the theorem of art. 19.

23. Before proceeding to the actual calculation of the volume of an ellipsoid-pedal,
we may remark, lastly, that for any four origins situated on a concentric and co-axal
quadric the corresponding pedal-volumes satisfy the relation

PD x5, .2/?, 27 =09
P, o %% 4
Py, 4% 9 4
P, o, 9, 2
into the geometrical meaning of which, however, we will, at present, not inquire further.

24. T propose to show, in the next place, that the volume of any pedal may be expressed,

symmetrically, by means of the first partial differential coefficients of the definite integral
('~ dv
V=\, Vet raeTe
It is well known that when the coordinates , g, 2 of any point of a surface are regarded
as functions of two independent variables ¢ and », we have the following equivalent
expressions for three times the volume of the pyramid whose vertex is the coordinate
origin, and base the surface-element ds enclosed between the curves ¢p=-const., v=const.
and their respective consecutives:
pds=| x, y, =z | dvde.

oz 2y sz
| d¢’ do’ dp
9z dy 0z
@’ @ dv

25. Now the equation of the primitive elhpsmd will obwously be satisfied, identically,
by the assumptions

- .
r’=a, cos’o,

v
v ay

y'=a, sin® @,

U-I-tl

L=
3v+as,

which, when substituted in the above determinant and in the expression for p, given in

art. 15, lead at once to the expressions
) ds=—"% Vala2 _dvdp

o 2 (”‘*"ls)§

1 mvte
pg [ co S ¢+

sm“’ ¢] ra
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Substituting these values in the second expression for Py, given in art. 15, extending

the integration over the ellipsoid-octant,—whereby the limits of ¢ will clearly be 0 and 32'-,
whilst those of » will be 0 and co,—and taking eight times the result, we have

4 ’ v+ a5)2dv.dp ,
vV g [ U0 cog ? + + D+ e qs]
]

3Py=—

whence, by diﬁ'erentiation, we deduce

2 (v-+ ag)¥do dp
T da */ 08y [ ! tcos’p+ + 2sm2 cp]

The integration according to ¢ presents no dlfﬁculty, and when effected gives the result

[ 3a; 2a0, 34 :l(v;+a3)dv
33_ (7’4‘0‘1)Q (”'l‘-al)("’""%) "ot VR
where, for brevity, we have put
R;(@+a;)(p+a§)(v+a5)._
26. A more convenient form can be given to the above expression for A, by intro-
ducing the partial differential coefficients of the two symmetrical integrals

Ay - vdv
V"S VR W‘S %
In fact if, for brevity, we indicate the results of the operations

9 0 9 0o

dey’ day """ da?’ daday’ """

performed on any subject, by giving to the symb.ol ~of that subject the suffixes
19 25 eo e 11y 125 o s ey WE shall have

;i‘ A= as(.afvn 1 2“1%‘715 + “§V22) + Wy, +:2“1a2W12 + W,

as may be easily verified.
27. This expression, however, may itself be resolved into a simpler one involving
V,, V., V, alone. To effect this resolution we may observe that, in virtue of the identity
dR - 3
i =R, +R,+R;,
we have __ ‘
Wb Wt W= — i (R R R) 22— "ua (L)
S T R, T \VR)’
from which, by partial integration, we deduce
W1+W2+W3=—V,
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smce -;—/-E clearly vanishes at both limits. From this expression, again, we obtain by

dlﬂ'erentlatlon the relations
Wl 1 +VV12+W13 = Vl’

Widt-Wed- Wy =—V,,
Wit-Wy -+ W= —V,.
By subjecting the integral V to a precisely similar treatment, it will be found that

1
Vi+V,+V,=— Yz

—_— 2“1(Vu +V12+"713),
_— 2“2(V12 +V23+V23)a
= —20,( V3 Vy+ V).

- 1 dv :
—_1 L
V.= 25 vra VR &e. ..

1 . 1 dv

H]

Further, since

we have, on resolving the coefficients of —= in V,,, V,,, V;, into partial fractions,

4/ R
2(a,—a,)Vy,=V,—V,,
2(y—a,)Vye=V,—V,,
2(ay—a,)Vy=V,—V,;

and in like manner we also find that ,
2(a,—a,)W,=a,V,—a,V,,
2(ay—as)Wy=0a,V,—a,V,,
2(a;—a,)Wy=a,V,—a,V,

28. Now the last four groups of equations clearly suffice for the expression of Ay

(art. 26) in terms of V,, V,, V,, and thence, by mere permutations of suffixes, we may
obtain the values of Au, A,,. The results, after due simplification, may be thus written:

11_‘_2[< a,+ ad)alv +( w3+2al)a2V +(2a,+ ,)asV,

-

-

A22=f§[(zazr -“3>“1V1+( as+' @), Vot+( +2a,)aV,

Aw=—3[( at2a)0V,+ 2ot @)aVit( ot w)a)-

From these values of the pedal-altitudes at infinity on each of the axes (art. 21) we
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obtain, by addition, the following value of the pedal-altitude at infinity on a line equally
inclined to these axes:

Au +A22 +Aaa= - 27’[(“2 +‘as)“1V1 + (aa + “1)“2V2+ (ax + a'z)aavsj-

Again, in virtue of the relation at the end of art. 15, we at once deduce the following
expression for the volume of the central pedal of the ellipsoid,

Py= _‘% [mlalvl + My, Vy + ms“svex] H

if, for brevity, we put . |
Sy = (@, 45+ ;) (@t @)+ Gt s,
3my=(a,+ @y +as)( a5+ )+ G+
8my=(a+tat+a)(a+a)+ai+a.

Lastly, for the volume of any pedal (P) whose origin A is at @, 7, 2, we have the
expression :

P=—7 [M,.0.V,+ M, 0Vt M.V ]

where again, for brevity, we pﬁt
3M, =(8r*+a)(t,+ )+ 3(ay’ +a:2" )+ da+ a5,
SM,=(8r*4a)(a,+a,)+ 3(as2* +aa’) + a5+,
3M,=(3r*+a)( @, +a,)+3(aa* + ay’)+ @i+

7* and o being, as usual, abbreviations for a’+y"+2° and ¢,+a,+a, The volume of
the primitive ellipsoid, when expressed by means of V,, Vg, V,, is

4= [ ’
=—7 | %a,.a,V, +_a'3a1 @,V 0,4, a3V3] s

as is at once evident from one of the relations in art. 27. The integral' V itself, when
thus expressed, has the value
V=—2[a,V,+a&V,+aV,];
1

for it may readily be shown to be a homogeneous function of a,, @,, @, of the degree —3.
I do not dwell upon the many interesting expressions of S and V by means of pedal-
volumes, but proceed at once to the expression of the foregoing ‘results by means of
elliptic integrals. _
29. The integral V, by means of whose partial differential coefficients the volumes of
all pedals have been expressed, is at once converted into an elliptic integral of the
first kind by the substitution

G@—ag
v+a,

whereby the limits 0 and oo of v will correspond, respectively, ‘to the limits ¥ and 0
MDCUCLXIIL F

sin® o= s
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of @, provided

- a- - a,—0a.
0=cos™' A / B=sin ’\/L—@.

@) 2,

The result of this substitution is easily found to be

2 dp _ F

V= «/al—-aayx/l—/cgsinggs_z vVa,—ag
0

where

_4—a
kz_tzl—a3
is clearly positive and less than unity.

Representing also, with LEGENDRE, by E the elliptic integral, of the second kind,

[
E(s, k)=( dp/T= s,
and differentiating the preceding value of V, it will be found that

Vo 1 F 1 E
Y Tay—ay, Va,—a, o—ay,  Va—ag

V.—_% 1 1 F a,—ag E
T ay—ay ¥ ayagy al—ae‘ ‘/“1"'“3-(“1—“9)(%—”3). va—ay
V3= "% —————-————_}_ -+ ! . E .
ag—ay ¥V o044 ay,—a, vVa—ag

By substituting these values in the formule of art. 20, we might at once obtain the
values of A,,, A,,, Ay, Py, and P expressed in elliptic integrals. Since the volume of
any pedal (P), however, may be deduced from that of the central pedal (P,) by mere
differentiation (art. 15), the following complete expression for P, will here suffice :—

Pu=5] (2e—a)\/ "+ (@t d~a) et 20— |

Va,—a, a,—ag

This expression, I may add, agreeé precisely with the one first obtained by Professor
TORTOLINT in 1844 *,

30. If we allow @, to diminish indefinitely, the amplitude # approaches the limit
g, and the modulus % acquires the value

k= o — 0y,
L1

* Crerre’s Journal, vol. xxxi, p. 28, At the time the present paper was communicated to the Royal Society
I was under the impression that the central pedal of the ellipsoid was the only one whose volume had hitherto
been calculated. I have since found that Dr, MaeENER, in a paper “On the Cubature of Ellipsoid-pedals”
(GrunEeRT’s Journal, t. xxxiv. 1860), first gave the complete expression for P in elliptic integrals. Although the
simple relation between P, and P, above referred to, appears to have escaped Dr. MaGENER’S notice, it is due to
him to state that he not only determined the loci (A) of the origins of ellipsoid-pedals of equal volume, but also
succeeded in giving to P a very interesting and symmetrical form, by introducing the partial differential coeffi-
cients of the well-known double integral to which Jacosr, in 1833 (CrerLe’s Journal, vol. x.), reduced the
quadrature of the reciprocal of the primitive ellipsoid.
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The elliptic functions E and F thus become transformed into the complete ones
E(g, lcl) and F(z;-, lc,), or more simply, E, and F,.

Representing generally by [U] the limit to which any function U approaches when «,
diminishes indefinitely, we deduce from the expressions in art. 29 the limiting values

(V=i e LA

1= % Va G~ Va

V]=—4._1 B, L B
a, a—ay Vay ©—l Va,

— 1
[V3]=°° y [Va ’\/ aa]= - Vm’ ' [a3V3]=O~

[Po:‘ =g ’\/El {2(6&, +a2)E1_a2F1 |

This last is the volume of the central pedal surface of an ellipse (art. 13). By substitu-
tion in art. 28, it will be found that the volume of any other pedal of this curve is given
by the formula

[P]—[P=F {[(Zal—az)E,-azF,]aﬂ-l—[(a,—2a,)E,+a2F,]y“’+(a,—a,)Elz*},
to which expression we should have been led at once had we sought, directly, the
values of A,,, A,,, Ay as exhibited in art. 13. In fact when @,=a,, the above formula
may be easily reduced to the one already found in art. 13 for the volume of the pedal
surface of a circle.

81. 1 give, lastly, the modifications of the preceding formule which correspend to
the special cases of ellipsoids of rotation.

For the prolate spheroid @,=a,, and

— 2 a,—a. a
Ve s [V 15 /)
_7 — 343 a,—a a;
PO_G{(2a1+3a3)\/al+—_———vﬁ log [,/ "'Zf*'\/ C }
oP 2 oP, 2 2
P =P,+2 %li’w +—ﬁ§(y +2°).
At either focus #*=a,—a,;, y=2=0, and the volume of (P) becomes

P, 4 —
P=P,42 %Q (“1_%):?; al\/“n

1
@y —ay

which is, of course, the volume of the sphere whose diameter is the major axis of the

generating ellipse.
For the oblate spheroid @,=a,, and hence

0 _
V=i cos“\/@,
Vo, —ag a
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cos‘ ‘\/a:]
a

P=g [(Sa, +2a3)\/a3+ v

P
P =P +B 0( 2'|'3/2)'+-2 7{22
which last formula, when @,=0, is also reducible to the last formula in art. 13 for the
volume of any pedal (P) of a circle, regarded as the limit of a surface, one of whose
dimensions has been allowed to diminish indefinitely.



